Existence of radial solutions to biharmonic k-Hessian equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial entire solutions for supercritical biharmonic equations ∗

We prove existence and uniqueness (up to rescaling) of positive radial entire solutions of supercritical semilinear biharmonic equations. The proof is performed with a shooting method which uses the value of the second derivative at the origin as a parameter. This method also enables us to find finite time blow up solutions. Finally, we study the convergence at infinity of regular solutions tow...

متن کامل

EXISTENCE OF POSITIVE ENTIRE RADIAL SOLUTIONS TO A (k1, k2)-HESSIAN SYSTEMS WITH CONVECTION TERMS

In this article, we prove two new results on the existence of positive entire large and bounded radial solutions for nonlinear system with gradient terms Sk1 (λ(D u1)) + b1(|x|)|∇u1|1 = p1(|x|)f1(u1, u2) for x ∈ R , Sk2 (λ(D u2)) + b2(|x|)|∇u2|2 = p2(|x|)f2(u1, u2) for x ∈ R , where Ski (λ(D ui)) is the ki-Hessian operator, b1, p1, f1, b2, p2 and f2 are continuous functions satisfying certain p...

متن کامل

Existence of Positive Solutions to a Nonlinear Biharmonic Equation

In this note we use the Nehari manifold and fibering maps to show existence of positive solutions for a nonlinear biharmonic equation in a bounded smooth domain in Rn, when n = 5, 6, 7. Mathematics Subject Classification: 35J35, 35J40

متن کامل

Local solvability of the k-Hessian equations

In this work, we study the existence of local solutions in R to k-Hessian equation, for which the nonhomogeneous term f is permitted to change the sign or be non negative; if f is C∞ , so is the local solution. We also give a classification for the second order polynomial solutions to the k−Hessian equation, it is the basis to construct the local solutions and obtain the uniform ellipticity of ...

متن کامل

Existence of solutions for a family of polyharmonic and biharmonic equations

We consider a family of polyharmonic problems of the form (−∆)mu = g(x,u) in Ω, Dαu = 0 on ∂Ω, where Ω ⊂ Rn is a bounded domain, g(x,·) ∈ L∞(Ω), and |α| < m. By using the fibering method, we obtain some results about the existence of solution and its multiplicity under certain assumptions on g. We also consider a family of biharmonic problems of the form ∆2u+ (∆φ+ |∇φ|2)∆u+ 2∇φ ·∇∆u = g(x,u), w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2015

ISSN: 0022-0396

DOI: 10.1016/j.jde.2015.04.001